

Microalgae working for a cleaner planet: waste valorization, resource recovery and circular innovation

Luísa Barreira

- Associate Professor Department of Chemistry and Pharmacy from the Faculty of Sciences and Technology, University of Algarve
- Principal Researcher, Centre of Marine Sciences (CCMAR), co-leader of the Marine Biotechnology Group
- Member of the GreenCoLab non-profit private organization, a collaborative platform to bridge the transfer of knowledge from academia, industry, stakeholders, and consumers.
- Researcher in microalgae for 16 years

Davide Liberti

- Post-Doc Centre of Marine Sciences (CCMAR), coordinator of the scientific area of Bioremediation and wastewater treatment from MarBiotech
- PhD in Biotechnology at Università degli studi di Napoli Federico II

• Researcher in microalgae for 6 years

Research lines:

- Microalgal bioprospection, culture scale-up, and strain improvement
 - Algae as **functional** food and feed
- Algal biomedical applications (nutraceuticals, cosmeceuticals, pharmaceuticals)
- **Bioremediation**, wastewater treatment, and nutrient **recycling** within the concept of circular economy

Microalgae and Cyanobacteria

Photosynthetic microorganisms

- Unicellular or colonial
- Eukaryotic or prokaryotic (cyanobacteria)
- Freshwater or marine species
- Size 0.2 200 μm
- Different colours (pigment composition)
- Different shapes

Microalgae Industrial Cultivation

Open systems

Low energy demand Less control Possible contaminations

Closed systems

High control High energy consumption Very low risk of contamination

Biodiversity

Microalgae have been estimated to include anything between 200,000 to 800,000 species

Less than 50,000 are described

Less than 50 are cultivated at industrial scale

Proximal Composition

Applications

Sutherland et al. (2021) Current Research in Environmental Sustainability

Biofuels production

Lipids extraction

Biofuels

Bioremediation

Water Framework Directive / Wastewater Treatment Regulation

Regularly updated

Lower limits for Nitrogen and Phosphorous Higher coverage for smaller towns and rural areas Extended list of emerging pollutants

https://environment.ec.europa.eu/topics/water/water-framework-directive_en

Official Journal	EN				
of the European Union	L series				
2024/3019	12.12.2024				
DIRECTIVE (EU) 2024/3019 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCI	L				
of 27 November 2024					
concerning urban wastewater treatment					
https://eur-lex.europa.eu/eli/dir/2024/3019/oj/eng					

Conventional Wastewater Treatment

RHE

Bioremediation

- Nitrogen
- Phosphorous
- Heavy Metals
- Polychlorinatred
 Byphenyls (PCBs)
- Polycyclic Aromatic
 Hydrocarbons
 (PAHs)
- Pesticides
- PolyFluoroAlkyl
 Substances (PFAS)
- Pharmaceuticals

Compound	Removal (%)	Species	Installation
		PFAS	
PFOA	37	Synechocystis sp.	Labscale
PFOS	88	Synechocystis sp.	Labscale
		Pesticides	
Dimethomor	24	Tetradesmus obliquus	Labscale
ph	15	Tetradesmus	Labscale
	54	quaaricauda Tetradesmus obliguus	Labscale
Isoproturon	59	Tetradesmus	Laboralo
	56	quadricauda	Labscale
Pyrimethanil	7.0	Tetradesmus obliquus	Labscale
	10	quadricauda	Labscale
Chlorpyrifos	97	Scenedesmus sp.	Labscale
Oxadiazon	88	Chlorella sp. and Scenedesmus sp.	Labscale
Cypermethri n	74	Chlorella sp. and	Labscale
		Heavy metals	
	40.7	Scenedesmus	Labscale
Arsenic	48	almeriensis	Labscalo
	59.5	Ulva Reticulata	Labscale
Boron	38.6	Scenedesmus	Labscale
	86	Phormidium	Labscale
	58	ambiguum Desmodesmus sp.	Labscalo
Cadmium	55	MAS1 Chlorococcum	Labscale
	17	humicola	Labscale
	75	Porphyra leucosticta	Labscale
	95	Oedogonium westi Enteromorpha	Labscale
	93.38	intestinalis	Labscale
	66	Cladophora glomerata	Labscale
Chromium	80	pringsheimii	Labscale
	93	Oedogonium westi	Labscale
	85	Cystoseira barbata	Labscale
	85	Cystoseira crinita	Labscale
Cobalt	44	humicola	Labscale
	80	AARLG074	Labscale
Copper	88	Chlorophyceae spp.	Labscale
	86	Ulva lactuca	Labscale
Iron	74.47	Chlorococcum humicola	Labscale
	100	Gelidium amansii	Labscale
Lead	61-97	Oedogonium westi	Labscale
Lead	70	Phormidium ambiguum	Labscale
	95	Porphyra leucosticta	Labscale
Mangapore	99.4	Chlorella vulgaris	Labscale
manganese	74	Ulva lactuca	Labscale
	98	Ulva lactuca	Labscale
Mercury	97	Phormidium	Labscale
Nikel	59-89	Oedogonium westi	Labscale

Chlorella pyrenoidosa

Chlamydomonas reinhardtii

Chlorella sp. and Scenedesmus sp.

Chlorella sorokiniana

Scenedesmus obliquus

Natural microalgal consortium

Natural microalgal consortium

Natural microalgal consortium

Natural microalgal consortium

Chlorella vulgaris

Chlorella vulgaris

PCBs n.a

n.a

n.a

n.a n.a n.a n.a Pharmaceuticals 99 99

not removed 29.99

21.58

79.09

>99 36-85 10-69

33-100

30-57 49

37-53

>99

85.3 >91 >36 17-53

not

removed >99 51.3 78

0.91-100

abscale

Labscale

Pilot

outdoor

Pilot

outdoor

Pilot

outdoor

Pilot

outdoor

Spiked culture

medium

Spiked culture

medium

Urban wastewater

Spiked culture

medium

Domestic

wastewater

Domestic

wastewater

Aqueous media

Domestic

wastewater

Urban wastewater

PAHs			
∑PAHs	89-99	Nannochloropsis oculata	Labscale
∑PAHs	91-98	Chlorella vulgaris	Labscale
Benzo[a]anthra cene	68-92	Selenastrum capricornutum and	Labscale
Benzo[a]pyrene	62-87	Scenedesmus acutus	
	86.64	Nostoc calciola	
Phenanthrene	46.67 73.13	Scenedesmus sp. Chlorella sp.	Labscale
	82.7	Anabaena sp.	
	77.31	Leptolyngbya fragilis	
Durono	78.71	Chlorela sp.	Labrala
Pyrene	95	Oscillatoria sp.	Lauscale
Benzo[a]anthra cene	77.7-90.9	Selenastrum capricornutum	Labscale

Wastewater Treatment With Microalgae Advantages: **Sustainable** Viable costs **Biomass** production system **GREENDUNE PHOTOBIOREACTORS BLUEMATER** High volume/area ratio: 480 L m⁻² Modular systems \checkmark Connected in sequence or in parallel to achieve the total volume required

High land requirements in standard cultivation systems

The aim of this study was to evaluate microalgae biomass production, and tertiary treatment efficiency of urban wastewater using natural microalgal consortium in pilot GreenDune PBRs

Less CO_2 and GHG emissions

Figure 2 Natural Blooms development in GreenDune PBRsA) Stabilization phase and B) During the experiments

Experimental set-up with 3 sequential modules with a total working volume of 1440L installed at wastewater treatment plant at Algarve, Portugal

DAILY ANALYSIS

Cell growth control

- ✓ pH measurements
- ✓ Optical density (750 nm)

<u>Treatment efficiency</u>

- ✓ total-N
- ✓ N-NH₄,
- ✓ N-N0₃

OUTDOOR CONDITIONS

Continuous operational mode

- ✓ Spring (June 2020) HRT 24 h and 12 h
- ✓ Summer (August 2020) HRT 24 h and 48 h <u>Natural Bloom Culture</u>
- ✓ 7 days of stabilization
- ✓ 12 days of culture

SP24h

SP24h

SP12h

SU24h

SU48h

AU24 h AU48h

SP12h SU24h SU48h AU24 h

Fig. 2. Biomass concentration (mg L⁻¹) (a), pH variation (b), and water quality parameters in the PBRs effluent (treated wastewater) (c) TN, (d) NH₄⁺, (e) NO_3^- , (f) TP, (g) PO_4^{3-} and (h) COD in the different seasons and hydraulic retention times: winter 24h (W24h), winter 48h (W48h), spring 24h (SP24h), spring 12h (SP12h), summer 24h (SU24h), summer 48h (SU48h), autumn 24h (AU24h) and autumn 48h (AU48h). In these diagrams, the x represents the average value and the horizontal dash the median of the nutrient's concentration. The box limits are defined by the lower and upper quartiles of the data and the whiskers are the minimum and maximum values of the data set. The horizontal lines across the charts represent the legal limit for that nutrient in the discharged treated wastewater.

MARINE BOARD

Seas &

European

Advancing

<image>

HRT – 24h, 48h (Winter, Summer, Autumn) HRT – 12h, 24h (Spring)

Water reuse for for seed production or irrigation of naturally restricted use areas

Morais et al. (2020) J Cleaner Production

Pereira et al. (2023) Applied Sciences

HRT – 24h, 48h (Winter, Summer, Autumn) HRT – 12h, 24h (Spring)

Water reuse for for seed production or irrigation of naturally restricted use areas

HRT – 24h, 48h (Winter, Summer, Autumn) HRT – 12h, 24h (Spring)

Water reuse for for seed production or irrigation of naturally restricted use areas

Morais et al. (2020) J Cleaner Production

Pereira et al. (2023) Applied Sciences

Wastewater Treatment With Microalgae: Green Treat

2.5-2.0-1.5-1.0intumn spring summer ing spring is summer is winter

Shannon

Species richness

Species richness and evenness **Biodiversity changes with seasons!**

Spring: dominated by rotifers! Autum and Winter: *Tetradesmus* sp. Summer: *Chlorella* sp.

Wastewater Treatment With Microalgae: Green Treat

Figure 2. Accumulated biogas production after 50 d: (**A**) different seasons (\bigcirc) summer (\triangledown) autumn (\blacksquare) spring (\triangle) winter and (**B**) winter season with different HRT (\blacksquare) 24 h and (\bigcirc) 48 h and (\blacktriangle) *Skeletonema*monoculture. The data plotted are the differences between the means of the digested sample and the mean of the inoculum control (all *n*= 3). Error bars represent standard deviation.

Table 2. Maximum biogas and methane production (mL/g volatile solids) using non-hydrolyzed (NH) and hydrolyzed (H) biomass.

Product	Summer	Autumn	Spring	Winter24	Winter48	Skeletonema
Biogas NH	258 ±38 b,c	172 ±57 c	311 ±47 ь	167 ±37 с	190 ±55 ь,с	464 ±19 a
Methane NH	211 ±97 *,#	155 ±32 *,#	252 ±36 *,#	149 ±24 *,#	135 ±63 *,#	-
Methane H	189 ±8 #	81 ±11 #	239 ±12 #	191 ±29 #	137 ±21 #	-

The reported results are the difference between the means of the digested sample and the mean of the inoculum control (all n=3) ±the respective standard deviation. The same letters (^{a,b,c} used to compare biogas production), or symbols (* used to compare methane production between all non-hydrolyzed biomass conditions; # used to compare methane production between non-hydrolyzed and hydrolyzed conditions of the same season) indicate no statistical difference between tested conditions.

Biogas production

Higher biogas production and methane yield in the Spring

Lower yields than with monoalgal cultures

Low intrinsic biodegradability due to the prevalence of predators?

Case study:

Responsive hub for long term governance to destress the Mediterranean Sea from chemical pollution (RHE-MEDiation)

RHE

Case study: RHE-MEDiation Project

"Emerging pollutants are defined as compounds that are not currently covered by existing water-quality regulations, have not been studied before, and are thought to be potential threats to environmental ecosystems and <u>human health</u> and safety" Farré et al. 2008

Greek Demosite

Located in Greece, Elefsina, and its gulf, is a suburban city from Athens metropolitan area. It is situated in the Thriasio Plain and it is a major industrial centre, with the largest oil refinery in Greece Taking into account previous collected data, the bioreactors will be placed after the secondary wastewater treatment, to remove excess nutrients and pollutants not removed by the currently implemented system.

Turkish Demosite

Located in Turkey, Izmit Bay is a semi-closed embayment situated in the Marmara Sea. Residential and industrial areas in the region have increased threefold since 1980s, thus increasing the pollution. In Dilovasi, the bioreactors will befed with primarily treated wastewater, therefore conducting most of the treatment, to demonstrate their versatility.

Case study: RHE-MEDiation Project

Located in south Italy, Mare piccolo is a bay surrounded by Taranto city. In the past, it has been overloaded with pollutants from several sources, ILVA above all. The aim is to prevent further accumulation of pollutants in the seawater of Mare Piccolo, pumping water from Galeso River. Mare Piccolo is very important for muscles aquaculture, a very well known specialty from Taranto.

List of major contaminants deemed to be removed from EU waters and are in line with the RHE-MEDiation GA, based on the Directive 2013/39/EU (WFD) and the Proposal (for a Directive of the EU and of the Council) amending Directives 2000/60/EC, 2006/118/EC and 2008/105/EC. In blue: compounds common within the WFD and its proposed amendment.

Pesticides	PFAS/PFOS	Pharmaceuticals	Metals	PAHs	PCBs
Aldrin	Perfluorohexane sulfonic acid (PFHxS)	17 alpha-ethinylestradiol	Cd	Anthracene	PCB 77 (Dioxin-like)
Dieldrin	Perfluorononanoic acid (PFNA)	17 beta-estradiol	Pb	Naphthalene	PCB 81 (Dioxin-like)
Endrin	Perfluorobutane sulfonic acid (PFBS)	Azythromycin	Hg	Fluoranthene	PCB 105 (Dioxin-like)
Isodrin	Perfluorohexanoic acid (PFHxA)	Erythromycin	Ni	Benzo[a]pyrene	PCB 114 (Dioxin-like)
Atrazine	Perfluorobutanoic acid (PFBA)	Diclofenac	Ag	Benzo[b]fluoranthene	PCB 118 (Dioxin-like)
Chlorpyrifos	Perfluoropentanoic acid (PFPeA)	Ibuprofen		Benzo[k]fluoranthene	PCB 123 (Dioxin-like)
DDTs	Perfluoropentane sulfonic acid (PFPeS)	Carbamazepine		Benzo[g,h,i]perylene	PCB 126 (Dioxin-like)
Trifluralin	Perfluorodecanoic acid (PFDA)	Clarithromycin		Indeno[1,2,3-cd]pyrene	PCB 156 (Dioxin-like)
Clothianidin	Perfluorododecanoic acid (PFDoDA)	Estrone		Chrysene	PCB 157 (Dioxin-like)
Diuron	Perfluoroundecanoic acid (PFUnDA)			Benzo[a]anthracene	PCB 167 (Dioxin-like)
Endosulfan	Perfluoroheptanoic acid (PFHpA)			Dibenz[a,h]anthracene	PCB 169 (Dioxin-like)
Hexachlorobenzene	Perfluorotridecanoic acid (PFTrDA)				PCB 189 (Dioxin-like)
Hexachlorocyclohexane	Perfluoroheptane sulfonic acid (PFHpS)				
Deltamethrin	Perfluorodecane sulfonic acid (PFDS)				
Esfenvalerate	Perfluorotetradecanoic acid (PFTeDA)				
Isoproturon	Perfluorohexadecanoic acid (PFHxDA)				
Pentachlorophenol	Perfluorooctadecanoic acid (PFODA)				
Dicofol	Ammonium perfluoro (2-methyl-3-oxahexanoate) (HFPO-DA or Gen X)				
Aclonifen	Propanoic Acid / Ammonium 2,2,3-trifluoro-3-(1,1,2,2,3,3-hexafluoro-3- (trifluoromethoxy)propoxy)propanoate (ADONA)				
Bifenox	2- (Perfluorohexyl)ethyl alcohol (6:2 FTOH)				
Dichlorvos	2-(Perfluorooctyl)ethanol (8:2 FTOH)				
Heptachlor/ Heptachlor epoxide	Acetic acid / 2,2-difluoro-2-((2,2,4,5-tetrafluoro-5-(trifluoromethoxy)-1,3-dioxolan-4- yl)oxy)-(C6O4)				
Terbutrin	Perfluorooctanoic acid (PFOA)				
Acetamiprid	Perfluorooctane sulfonic acid (PFOS)				
Bifenthrin					
Glyphosate					
Imidacloprid					
Nicosulfuron					

P

RESTORE OUR OCEAN & WATERS

Greek Demo Site

Greek Demo Site

Reactors: 30 units Total volume: 15 m³ Consortium developing time: 10 days Hydraulic Retention Time: 24 hours Sensors: 6

Analyzed parameters pH Redox potential Ammonium concentration Turbidity Conductivity Chlorophyll content

Preliminary results

Starting point

After one month

Turkish Demo Site

RESTORE OUR OCEAN & WATERS

Turkish Demo Site

RHE

Metagenomic Analyses

Metagenomic Analyses

Community characterization – Abundance Plots

RHEMEDiation

Case study:

Biogenic CO₂ capture into Sustainable Energy Carriers - A novel photosynthetic and hydrogenotrophic CO₂ fixation combined with waste nutrient upcycling for production of carbon negative energy carriers.

Project

Case study: COSEC Project Work Pipeline – Strain selection

Task 2.1. Optimise fixation of biogenic CO₂ and residual nutrients into microalgae biomass **Task 3.1**: Strain development for improved resilience to flue gases and production of lipid rich biomass

Textile wastewater

Switzerland

Greenhouse wastewater

Urban wastewater

Case study: COSEC Project Work Pipeline – Strain improvement

RHESMEDiation

Case study: COSEC Project Work Pipeline – Strain improvement

Final Considerations

- Versatile Applications: Microalgae have potential in various sectors from biofuels to nutraceuticals and animal feed
- **Sustainability Challenge**: Large-scale production requires improvements in economic, energetic, and environmental sustainability
- Wastewater as a Resource: Wastewaters are nutrient-rich (N and P), making them ideal for microalgal growth and offering a low-cost, eco-friendly cultivation method
- **Biorefinery Approach**: Coupling microalgae cultivation with wastewater treatment enables contaminant removal while producing valuable biomass
- Environmental Benefits: This approach mitigates environmental impacts from synthetic media and traditional effluent treatments
- Need for Research & Guidelines: Few large-scale studies exist; fundamental design and operational guidelines are still lacking
- **Technology Readiness Gap**: Advancing from TRL 3 to TRL 9 is essential for commercial deployment and meeting real-world demands

Conclusions

- The use of microalgae in wastewater treatment can be economically viable, with positive energy balances
- More pilot or demonstration-scale studies are needed to better assess real process costs
- Natural microalgal consortia may be easier to manage than specific strains due to greater adaptability
- The resulting biomass can be valorised as: biofuels, biostimulants / biofertilizers, and animal feed
- It is essential to assess the biomass's chemical composition and presence of toxic compounds before defining its application
- Main limitation of microalgae-based systems: large area requirement due to light dependence and long hydraulic retention times
- Solutions under development:
 - Vertical systems
 - Reactors with higher volume-to-area ratios
- Advantages over conventional treatments:
 - Efficient removal of emerging pollutants
 - Reduction of environmental impacts and treatment costs
- Promising application in rural areas or developing countries, where land availability is higher and treatment systems are often lacking

lbarreir@ualg.pt

dliberti@ualg.pt