European Marine Board, 2022-12-15 Jean-Olivier Irisson (with input from many colleagues!)

Machine learning to unlock the potential of plankton imaging big data

From pictures to knowledge

Many instruments

Loads of data

ZooScan = 1 Bpx/y, 1.5M objects/y UVP = 8.6Bpx/y, ~10M objects/y ISIIS = 25Tpx/y, 100M objects/y

Steep growth in data acquisition

Steep growth in data acquisition

Machine learning for data acquisition

From pictures to numbers

Quantitative imaging and ML-assisted sorting

Measure + classify *v5*, Deep learning

Software to **extract features** Area (ESD) Mean/SD of grey Feret diameter Major/minor, angle

+ a classifier

A **feature extractor** Convolutions Pooling

+ a **classifier** Flattening Fully connected layers

Measure + classify v5. Deep learning

Software to **extract features** Area (ESD) Mean/SD of grey Feret diameter Major/minor, angle

+ a classifier

A **feature extractor** Convolutions Pooling

+ a **classifier** Flattening Fully connected layers

Plankton image classification is a challenging ML problem

Total: 175 papers!

Evolution of machine learning techniques

Why is it hard?

Measure + classify *v5*, Deep learning

Measure + classify *V5*,

Deep learning

Measure + classify V5.

Deep learning

How deep is enough?

Model	Size	Accuracy	Avg. precision	Avg. recall
MobileNet v4 + 600	5.4M	89.4	91.2	92.0
MobileNet v4 + 1792	7.5M	89.2	90.9	91.9
EfficientNet v2 S + 600	25M	89.8	91.2	92.9
EfficientNet v2 XL + 600	208M	89.1	90.9	92.3
MobileNet v4 + 50	4.4M	88.9	90.1	901.6
MobileNet v4 features + PCA + RF	~4.4M	89.1	90.1	92.0

Sometimes, classification is not enough

0.35s ~ 2500 objects

6h ~ 150 millions objects

on cruise ~ 1.5 billion objects, among which ~1% are plankton (~20-30 millions)

Semantic segmentation

Extract only certain objects from a scene

Detect or segment objects

Classify them a the same time

EcoTaxa: ML-assisted image classification

EcoTaxa: ML-assisted image classification

Machine learning for data acquisition

From numbers to knowledge

Temporal dynamics

NB: performance metrics are hard to interpret!

Global biomass of fragile plankton

Biard T, Stemmann L, Picheral M, Mayot N, Vandromme P, Hauss H, Gorsky G, Guidi L, Kiko R, Not F (2016) In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532:504.

Global biomass of fragile plankton

Biard T, Stemmann L, Picheral M, Mayot N, Vandromme P, Hauss H, Gorsky G, Guidi L, Kiko R, Not F (2016) In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532:504.

Study	Size range (mesh size)	Depth	Global estimates (PgC)
Moriarty et al., 2012	≥2 mm	0-350 m	0.02
Moriarty and O'Brien, 2013	≥200 um	0-200	0.19
Buitenbuis et al., 2013	≥200 µm	Integrated	0.33-0.59
Buitenhuis et al. 2013	≥2 mm	0-500 m	0.22-1.52
Hatton et al. 2021	>200 um	0-200 m	0.53-31.57
Hatton et al. 2021	>2 mm	0-200 m	0.02-2.64
This study	≥765 µm - 37.5 mm	0-200 m	0.229

Physical-biological interactions at high resolution

Fluorescence

Oxygen

Life cycle and "behaviour" of single cell plankton

Morphological diversity of zooplankton

Morphological diversity of zooplankton

Community-level behaviour from individual-level morphology

Vilgrain L, Maps F, Picheral M, Babin M, Aubry C, Irisson J-O, Ayata S-D (2021) Trait-based approach using in situ copepod images reveals contrasting ecological patterns across an Arctic ice melt zone. Limnology and Oceanography 66:1155–1167.

Community-level behaviour from individual-level morphology

Vilgrain L, Maps F, Picheral M, Babin M, Aubry C, Irisson J-O, Ayata S-D (2021) Trait-based approach using in situ copepod images reveals contrasting ecological patterns across an Arctic ice melt zone. Limnology and Oceanography 66:1155–1167.

